Structural Characterization and Reactivity Properties of a New Class of Mo/Fe/S Double Cubanes with Mo-Bound S- μ_2 - η^1 ,O- η^1 Mercapto Carboxylate Ligands. New Catalysts for the Reduction of Hydrazine to Ammonia and Implications Regarding the Function of Nitrogenase

Konstantinos D. Demadis and Dimitri Coucouvanis*

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055

Received February 15, 1995[®]

The reaction of $(Et_4N)_2[MoFe_3S_4Cl_3(Cl_4-cat)(CH_3CN)]$, 1, with mercapto carboxylic acids of the general type HSCH(R)COOH affords in nearly quantitative yields the novel double cubanes of the formulation $[MoFe_3S_4Cl_3(SCH(R)COO)]_2^{4-}$ (R = H, mercaptoacetate, 2; R = CH₃, thiolactate, 3; R = CH₂COOH, thiomalate, 4). Black crystals of (Et₄N)2 are monoclinic, space group C2/c, with a = 18.959(9) Å, b = 12.657(7) Å, c =28.57(1) Å, $\beta = 98.03(4)^\circ$, V = 6790(5) Å³, and Z = 4. Black crystals of (Et₄N)³ are monoclinic, space group $C_{2/c}$, with a = 16.281(5) Å, b = 25.13(1) Å, c = 19.019(7) Å, $\beta = 112.61(2)^{\circ}$, V = 7182(4) Å³, and Z = 4. The solutions of both structures were accomplished by direct methods. The refinement with full-matrix least-squares methods of 299 parameters based on 5942 unique reflections for $(Et_4N)2$ $(2\theta_{max} = 45^\circ, I > 3\sigma(I))$ and of 287 parameters based on 4728 unique reflections ($2\theta_{max} = 45^\circ$, $I > 3\sigma(I)$) for (Et₄N)3 resulted in final R (R_w) values of 6.09% (6.26%) and 7.00% (6.52%), respectively, for 2 and 3. In both structures anisotropic temperature factors were assigned for all the non-hydrogen atoms in the cluster tetraanions. The tetraanions in 2 or 3 are composed of two MoFe₃S₄ subunits linked by the deprotonated thiol groups. In 2, the mean intracubane Mo-S, Fe-S, and Fe-Cl bond distances are found at 2.356(3), 2.278(4), and 2.219(4) Å, respectively. The mean Mov-Fe and Fe. Fe distances are found at 2.727(2) and 2.728(3) Å, respectively. Similar metric features are found for 3. Each of the two Mo atoms (separated by 3.916(3) Å in 2 and 3.899(3) Å in 3) has a distorted octahedral coordination and in addition to three μ_3 -S²⁻ ligands is coordinated to two μ_2 -thiolato and a η^1 -carboxylato ligands. The Mo-O(carboxylate) bond in 2 is 2.096(7) Å long (2.10(1) Å for 3), and two types of Mo-S(bridging) bond lengths are present at 2.523(3) and 2.577(3) Å. The closest intercubane S···S distance is 3.266(6) Å. (Et₄N)₂[MoFe₃S₄- $Cl_3(Cl_4-cat)(CH_3CN)$] also reacts with thiodiglycolic acid to form the [MoFe₃S₄Cl₃(OOCCH₂SCH₂COO)]²⁻ cluster, 5, in which the thioether dicarboxylate is coordinated to the Mo atom through its two carboxyl and thioether functionalities. Furthermore 1, reacts with 3,4-dimercaptotoluene and thiosalicylic acid to form respectively compounds 6 and 7 with the bidentate ligands bridging the two $MoFe_3S_4$ subunits in a manner similar to that in 2 and 3. EPR spectra are not observed for 2-4 in CH₃CN glasses at 5 K. The cyclic voltammetry of 2-4 shows multiple reductions and oxidation waves, and the two reduction waves are separated by 190-210 mV. The electrochemical data and the lack of the characteristic S = 3/2 EPR signal in solutions of 2-4 suggest that these molecules are electronically coupled and retain the double cubane structure in solution. Cluster 5 shows a characteristic $S = \frac{3}{2}$ EPR signal and displays a single reduction wave at -745 mV. The reduction of hydrazine to ammonia in the presence of cobaltocene and 2,6-lutidinium chloride was catalyzed by 3. The core of the latter was found to be intact at the end of the catalytic reaction. It is proposed that in the presence of hydrazine, the dimeric structure of 3 collapses to generate single cubanes with Mo-coordinated, terminally bound hydrazine that undergoes subsequent protonation/reduction to ammonia.

Introduction

The synthetic Fe/Mo/S cubanes (single¹ or double²) show features associated with the metal-sulfido framework and the Mo atom coordination environment that structurally are quite similar to those of the nitrogenase Fe/Mo/S cofactor.³ The structure of the latter was determined in recent crystallographic studies on the Mo-Fe protein.^{4,5} In the synthetic cubane clusters, the [MoFe₃S₄]³⁺ cores show EPR spectral characteristics of an $S = \frac{3}{2}$ ground state that electronically mimic the semireduced state of the Fe-Mo protein of nitrogenase and of the extruded FeMo cofactor.⁶ In the Fe/Mo/S cubanes, the sixcoordinate Mo atom is located in a distorted octahedral environment bound by three core μ_3 -S²⁻ ligands. In the vast majority of the Fe/Mo/S cubanes, the remaining set of ligands on the Mo atom are a bidentate ligand and either a neutral⁷ or an anionic⁸ ligand. Recently, MoFe₃S₄ cubane clusters were obtained that contain polycarboxylate ligands bound to the Mo site.⁹ These clusters represent the first examples of models that

^{*} Abstract published in Advance ACS Abstracts, June 1, 1995.

Mizobe, Y.; Mascharak, P. K.; Palermo, R. E.; Holm, R. H. Inorg. Chim. Acta 1983, 80, L65. (b) Mascharak, P. K.; Armstrong, W. H.; Mizobe, Y.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 475. (c) Palermo, R. E.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 4310. (d) Palermo, R. E.; Singh, R.; Bashkin, J. K.; Holm, R. H. J. Am. Chem. Soc. 1984, 106, 2600. (e) Zhang, Y. P.; Bashkin, J. K.; Holm, R. H. Inorg. Chem. 1987, 26, 694. (f) Liu, Q.; Huang, L.; Liu, H.; Lei, X.; Wu, D.; Kang, B.; Lu, J. Inorg. Chem. 1990, 29, 4131.

⁽²⁾ Wolff, T. E.; Berg, J. M.; Hodgson, K. O.; Frankel, R. B.; Holm, R. H. J. Am. Chem. Soc. 1979, 101, 4140. (b) Wolff, T. E.; Power, P. P.; Frankel, R. B.; Holm, R. H. J. Am. Chem. Soc. 1980, 102, 4694. (c) Palermo, R. E.; Power, P. P.; Holm, R. H. Inorg. Chem. 1982, 21, 173. (d) Wolff, T. E.; Berg, J. M.; Power, P. P.; Hodgson, K. O.; Holm, R. H. Inorg. Chem. 1980, 19, 430. (e) Armstrong, W. H.; Mascharak, P. K.; Holm, R. H. J. Am. Chem. Soc. 1982, 104, 4373. (f) Coucouvanis, D.; Challen, P. R.; Koo, S. M.; Davis, W. M.; Butler, W.; Dunham, W. R. Inorg. Chem. 1989, 28, 4181. (g) Challen, P. R.; Koo, S. M.; Kim. C. G.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 8606. (h) Mosier, P. E.; Kim, C. G.; Cuucouvanis, D. Inorg. Chem. 1993, 32, 3620. (i) Coucouvanis, D. Acc. Chem. Res. 1991, 24, 1.

may mimic the coordination of the homocitrate ligand to the Mo atom of the nitrogenase cofactor.^{10,11}

In a previous communication, we reported the synthesis, structural characterization, and reactivity characteristics of a new class of Fe/Mo/S double cubanes that contain mercapto carboxylate ligands coordinated to the Mo atoms and also bridge the cubane subunits.¹² In this paper, we report in detail the synthetic and crystallographic studies briefly communicated previously.¹² Further, as a continuation of our studies of the catalytic reduction of nitrogenase substrates by the synthetic Fe/M/S (M = Mo,V) cubanes,^{13,14} we report herein the catalytic reduction of hydrazine to ammonia by the mercapto carboxylate derivatives of these clusters.

Experimental Section

Synthesis. All experimental procedures were conducted under strictly anaerobic conditions using either a Vacuum Atmospheres Dri-Lab glovebox filled with prepurified nitrogen or standard Schlenk techniques. The chemicals in this research were used as purchased, except for solvents, which were purified as described elsewhere.⁹⁶ All the carboxylic acids, hydrazine, lutidine, a 1.0 M standard solution of HCl/Et₂O, and cobaltocene were purchased from Aldrich Chemical Co. and used without further purification. Lutidine hydrochloride was synthesized by mixing 2,6-lutidine and HCl/Et₂O in Et₂O. Filtration of the milky white precipitate and drying *in vacuo* afforded an analytically pure material. Elemental analyses were performed by the Analytical Services Laboratory in the Department of Chemistry at the University of Michigan.

Physical Methods. Details on the instrumentation used for the spectroscopic and electrochemical studies can be found elsewhere.^{9b}

Preparation of Compounds. (a). $(Et_4N)_2[MoFe_3S_4Cl_3(Cl_4-cat)-(CH_3CN)]$ (1) was synthesized by a modified published procedure.^{1d} Abbreviations used: Cl₄-cat = tetrachloro-catecholate, GA = glycolate, MAA = mercaptoacetate, TLA = thiolactate, TMA = thiomalate, TDGA = thiodiglycolate, DMT = 3,4-dimercaptotoluene, TSA = thiosalicylate, Lut-HCl = 2,6-lutidine hydrochloride.

(b) $(Et_4N)_4[(MAA)MoFe_3S_4Cl_3]_2$ (2). A sample of 1 (0.52 g, 0.50 mmol) was dissolved in 30 mL of CH₃CN. Mercaptoacetic acid (HSCH₂COOH, 5 mL of a 0.1 M stock solution in CH₃CN) was added

- (3) Stiefel, E. I., Coucouvanis, D., Newton, W. E., Eds.; Molybdenum Enzymes, Cofactors and Model Systems; ACS Symposium Series 535; American Chemical Society: Washington, DC, 1993; Chapters 10-23. (b) Burgess, B. K. Chem. Rev. 1990, 90, 1377. (c) Newton, W. E. In Biological Nitrogen Fixation; Stacey, G., Burris, R. H., Evans, H. J., Eds.; Chapman and Hall: New York, 1992; p 877. (d) Smith, B. E.; Eady, R. R. Eur. J. Biochem. 1992, 205, 1. (e) Leigh, G. J. New J. Chem. 1994, 18, 157. (f) Eady, R. R.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1994, 2739. (g) Ludden, P. W. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed.; John Wiley & Sons: New York, 1994; Vol. 5, p 2566.
- (4) Kim, J.; Rees, D. C. Science 1992, 257, 1677. (b) Kim, J.; Rees, D. C. Nature 1992, 360, 553. (c) Kim, J.; Woo, D.; Rees, D. C. Biochemistry 1993, 32, 7104. (d) Chan, M. K.; Kim, J.; Rees, D. C. Science 1993, 260, 792. (e) Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389. (f) Rees, D. C.; Chan, M. K.; Kim, J. Adv. Inorg. Chem. 1993, 40, 89. (g) Reference 3a, p 170.
- (5) Bolin, J. T.; Ronco, A. E.; Morgan, T. V.; Mortenson, L. E.; Xuong, N. H. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1078. (b) Bolin, J. T.; Campobasso, N.; Muchmore, S. W.; Minor, W.; Morgan, T. V.; Mortenson, L. E. In New Horizons in Nitrogen Fixation; Palacios, P., Moura, J., Newton, W. W., Eds.; Kluwer: Dordrecht, 1993; p 83. (c) Dean, D. R.; Bolin, J. T.; Zheng, L. J. Bacteriol. 1993, 175, 6337. (d) Mortenson, L. E.; Seefeldt, L. C.; Morgan, T. V.; Bolin, J. T. Adv. Enzymol. Relat. Areas Mol. Biol. 1993, 67, 299-374. (e) Reference 3a, p 186.
- (6) Smith, B. E.; Lowe D. J.; Bray, R. C. *Biochem. J.* 1973, 135, 331. (b) Hawkes, T. R.; Lowe, D. J.; Smith, B. E. *Biochem. J.* 1983, 211, 495. (c) Oliver, M. E.; Hales, B. J. J. Am. Chem. Soc. 1992, 114, 10618. (d) Orme-Johnson, W. H. In ref 3a, p 257.
- (7) Ligand sets reported: substituted catecholate + neutral ligand L, where L = PEt₃,^{1b} NH₂NHPh,^{1d} NH₂NH₂,^{2g,h} pyrazine.^{2h}
- (8) Ligand sets reported: substituted catecholate + anionic ligand L, where $L = RS^{-,lb} RO^{-,lb} CN^{-,lb} N_3^{-;ld}$ oxalate + anionic ligand L, where $L = Cl^{-,9} CN^{-,9b,14}$

in a dropwise manner in the course of 5 min, causing a rapid color change to deeper brown with a greenish cast. The solution was stirred for a further 20 min and then filtered (no residue). Ether (100 mL) was layered on top of the filtrate, and after overnight standing at ambient temperature, a brown oily substance containing a microcrystalline material precipitated. The faintly colored supernatant liquid was decanted, and the oil was redissolved in CH₃CN and precipitated with ether. Isolation of the brown-black microcrystals and washing consecutively with EtOH, acetone, and ether gave 0.43 g of analytically pure material (quantitative yield). Anal. Calcd for Mo₂Fe₆-Cl₆S₁₀O₄N₄C₃₆H₈₄-CH₃CN (2, MW 1737.28): C, 26.24; H, 5.00; N, 4.03. Found: C, 25.93; H, 4.79; N, 3.90. (Evidence of CH₃CN of solvation could be seen in the infrared spectrum, 2249 (w) cm⁻¹ and was confirmed by X-ray crystallography.) Electronic spectrum (CH3-CN): featureless. Far-infrared spectrum (cm⁻¹): 290 (m), 320 (w), 345 (vs), 356 (vs), 392 (m), 412 (m), 454 (w). Mid-infrared spectrum (cm⁻¹): ν_{asym} (C=O) 1600 (vs), 1650 (vs); ν_{sym} (C=O) 1305.

(c) (Et₄N)₄[(TLA)MoFe₃S₄Cl₃]₂ (3). A sample of 1 (1.00 g, 0.96 mmol) was dissolved in 40 mL of CH₃CN. A solution of thiolactic acid (HSCH(CH₃)COOH, 0.96 mL of a 0.1 M stock solution in CH₃-CN) was slowly dripped into the cluster solution, causing an instant color change from brown to darker brown with a greenish cast. Additional stirring (20 min), filtration, and dilution of the filtrate with ether caused an oily material to separate from the mixture after overnight standing. The supernatant liquid was decanted, ether (70 mL) was added to the flask, and the oil solidified to a black-brown powder after stirring vigorously for 1 h. This material is sufficiently pure for further reactions but can be recrystallized from CH₃CN/Et₂O (yield 0.80 g, 95%). Anal. Calcd for Mo₂Fe₆Cl₆S₁₀O₄N₄C₃₈H₈₈-CH₃CN (3, MW 1765.28): C, 27.19; H, 5.15; N, 3.97. Found: C, 26.51; H, 4.99; N, 3.51. Electronic spectrum (CH₃CN): featureless. Far-infrared spectrum: nearly identical to that of 2. Mid-infrared spectrum (cm⁻¹): v_{asym} -(C=O) 1629 (vs); v_{sym} (C-O) 1301 (m).

(d) $(Et_4N)_4[(TMA)MoFe_3S_4Cl_3]_2$ (4). A sample of thiomalic acid (HSCH(CH₂COOH)COOH, 0.07 g, 0.48 mmol) was slowly added to a solution of 1 (0.50 g, 0.48 mmol) in 30 mL of CH₃CN. There was a gradual color change from brown-orange to darker brown. After being stirred for 1 h, the mixture was filtered (no residue) and ether (100 mL) was added to the filtrate. An oily material precipitated after standing for 5 h. This oil was redissolved in CH₃CN and precipitated with ether to yield a black microcrystalline substance, which was collected by filtration, washed with EtOH, acetone, and ether, and dried *in vacuo* (yield 0.41 g, 94%). Anal. Calcd for Mo₂Fe₆Cl₆S₁₀O₈N₄C₄₀H₈₈ (4, MW 1812.34): C, 23.84; H, 4.63; N, 3.09. Found: C, 24.02; H, 4.61; N, 2.68. Electronic spectrum (CH₃CN): featureless. Far-infrared spectrum: essentially identical to that of **2**. Mid-infrared spectrum

- (10) Hoover, T. R.; Shah, V. K.; Roberts, G. P.; Ludden, P. W. J. Bacteriol. 1986, 167, 999. (b) Hoover, T. R.; Robertson, A. D.; Cerny, R. L.; Hayes, R. N.; Imperial, J.; Shah, V. K.; Ludden, P. W. Nature 1987, 329, 855. (c) Hoover, T. R.; Imperial, J.; Ludden, P. W.; Shah, V. K. Biochemistry 1989, 28, 2768. (d) Hoover, T. R.; Imperial, J.; Liang, J.; Ludden, P. W.; Shah, V. K. Biochemistry 1988, 27, 3647. (e) Imperial, J.; Hoover, T. R.; Madden, M. S.; Ludden, P. W.; Shah, V. K. Biochemistry 1989, 28, 7796. (f) Madden, M. S.; Kindon, N. D.; Ludden, P. W.; Shah, V. K. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 6517. (g) Liang, J.; Madden, M. S.; Shah, V. K.; Burris, R. H. Biochemistry 1990, 29, 8577. (h) Hoover, T. R.; Imperial. J.; Ludden, P. W.; Shah, V. K. J. Bacteriol. 1988, 170, 1978. (i) Madden, M. S.; Paustian, T. D.; Ludden, P. W.; Shah, V. K. J. Bacteriol. 1991, 173, 5403. (j) Reference 3a, p 196.
- (11) Hoffman, B. M.; Venters, R. A.; Roberts, J. E.; Nelson. M.; Orme-Johnson, W. H. J. Am. Chem. Soc. 1982, 104, 4711.
- (12) Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1994, 33, 4195.
- (13) (a) Coucouvanis, D.; Mosier, P. E.; Demadis, K. D.; Patton, S.; Malinak, S. M.; Kim, C. G.; Tyson, M. A. J. Am. Chem. Soc. 1993, 115, 12193. (b) Coucouvanis, D. In Bioinorganic Chemistry. An Inorganic Perspective of Life; Kessisoglou, D. P., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; p 259.
- Malinak, S. M.; Demadis, K. D.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 3126. (b) Demadis, K. D.; Chen, S. J.; Coucouvanis, D. Polyhedron 1994, 13, 3147.

⁽⁹⁾ Coucouvanis, D.; Demadis, K. D.; Kim, C. G.; Dunham, R. W.; Kampf, J. W. J. Am. Chem. Soc. 1993, 115, 3344. (b) Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1995, 34, 436.
(10) Hoover, T. R.; Shah, V. K.; Roberts, G. P.; Ludden, P. W. J. Bacteriol.

(cm⁻¹): ν_{asym} (C=O) 1608 (vs), 1640 (vs), 1732 (s, due to free -COOH); ν_{sym} (C=O) 1305 (m).

(e) $(Et_4N)_2[(TDGA)MoFe_3S_4Cl_3]$ (5). A sample of 1 (0.40 g, 0.38 mmol) was mixed with thiodiglycolic acid (HOOCCH₂SCH₂COOH, 0.06 g, 0.38 mmol) in 30 mL of CH₃CN. After 2 h of stirring, the solution was filtered, and upon addition of ether (~80 mL) to the dark brown filtrate and overnight standing, a brown-black powder and microcrystals precipitated. Isolation and recrystallization from CH₃-CN/Et₂O gave an analytically pure sample (yield 0.32 g, 93%). Anal. Calcd for MoFe₃Cl₃S₅O₄N₂C₂₀H₄₄ (5, MW 906.14): C, 26.49; H, 4.86; N, 3.09. Found: C, 26.37; H, 4.78; N, 3.08. Electronic spectrum (CH₃-CN, nm): 565 (br), 470 (br), 335. Far-infrared spectrum (cm⁻¹): 315 (m), 324 (m), 348 (s), 359 (vs), 383 (m), 397 (m), 414 (m). Mid-infrared spectrum (cm⁻¹): v_{asym} (C=O) 1635 (vs), 1655 (vs); v_{sym} (C=O) 1323 (s).

(f) (Et₄N)₄[(DMT)MoFe₃S₄Cl₃]₂ (6). A sample of 1 (0.10 g, 0.10 mmol) was dissolved in 20 mL of CH₃CN, and then 3,4-dimercaptotoluene (0.1 mL of a 0.1 M stock solution in CH₃CN) was added dropwise. There was a rapid color change from brown to brown-purple. After ~3 h of stirring, the solution was filtered (no residue) and ether (100 mL) was added to the filtrate. After overnight standing at 5 °C a black, highly crystalline material precipitated, which was collected by filtration, washed thoroughly with ether, and dried *in vacuo* (yield 0.08 g, 88%). Anal. Calcd for Mo₂Fe₆Cl₆S₁₂N₄C₄₆H₉₄ (6, MW 1824.58): C, 30.25; H, 5.04; N, 3.07. Found: C, 31.07; H, 5.13; N, 3.11. Electronic spectrum (CH₃CN, nm): 520, 365, 310 (sh). Farinfrared spectrum (cm⁻¹): 283 (sh), 304 (m), 352 (s), 364 (vs), 395 (m), 413 (m). Mid-infrared spectrum (cm⁻¹): 804 (s), 869 (w), 1033 (m), 1067 (s), 1201 (m), 1393 (s), 1578 (m).

(g) (Et₄N)₄[(TSA)MoFe₅S₄Cl₃]₂ (7). Solid thiosalicylic acid (HSC₆H₄-COOH, 0.08 g, 0.48 mmol) was added to a solution of 1 (0.50 g, 0.48 mmol) in 30 mL of CH₃CN under continuous stirring. The color became darker brown with a greenish cast. The solution was stirred for 30 in and then filtered (no residue). Upon addition of ether to the filtrate, a microcrystalline black solid precipitated. It was isolated by filtration, washed with EtOH, acetone, and ether, and finally recrystallized from CH₃CN/Et₂O (0.30 g, 69%). Elemental analyses have not been entirely satisfactory. Anal. Calcd for Mo₂Fe₆Cl₆S₁₀O₄N₄C₄₆H₈₈ (7, MW 1820.28): C, 30.33; H, 4.83; N, 3.08. Found: C, 26.93; H, 4.39; N, 3.23. Electronic spectrum (CH₃CN, nm): essentially featureless. Far-infrared spectrum (cm⁻¹): 312 (m), 341 (s), 355 (vs), 384 (m), 394 (m), 411 (m). Mid-infrared spectrum (cm⁻¹): ν_{asym} (C=O) 1595 (vs), 1610 (vs), 1635 (sh); ν_{sym} (C=O) 1339 (s); ν (C=H, aromatic) 3053 (w).

Reaction of (Et₄N)₄[(TLA)MoFe₃S₄Cl₃]₂ (3) with N₂H₄ in a 1:2 Molar Ratio. A sample of 3 (0.5 g, 0.28 mmol) was dissolved in 50 mL of CH₃CN, and the solution was subsequently mixed with N₂H₄ (2.84 mL of a 0.2 M stock solution). The dark brown homogeneous solution was stirred for ~ 8 h, and then Et₂O was layered onto it. After overnight standing, a microcrystalline material was isolated by filtration (yield 0.45 g, 90%). The elemental analyses have not been entirely satisfactory. Anal. Calcd for MoFe₃S₅Cl₃O₂N₄C₁₉H₄₈ (MW 8794.14; $(Et_4N)_2[SCH(CH_3)COO)(N_2H_4)M_0Fe_3S_4Cl_3])$: C, 25.50; H, 5.36; N, 6.26. Found: C, 22.67, 23.27; H, 4.76, 4.98; N, 6.55, 6.55. Analysis for N_2H_4 by the *p*-(methylamino)benzaldehyde method showed 0.8 molecule of N₂H₄ per single cubane. Electronic spectrum (CH₃CN): featureless. Far-infrared spectrum: nearly identical to that of 3. Middle-infrared spectrum (cm⁻¹): ν_{asym} (C=O) 1630(vs); ν_{sym} (C=O) 1300 (m); ν (N-H) 3292 (w), 3232(w), 3154(w); ν _{twist}(N-H) 1149-(m). Attempts to purify this material by recrystallization from CH₃-CN/Et₂O resulted in the formation of various amounts of starting material 3 with loss of N₂H₄.

Catalytic Reductions of Hydrazine. Reactions were performed anaerobically in CH₃CN. The final volume of the reaction mixture was 40 mL. The concentration of the catalyst was 2.0×10^{-4} M, and the concentrations of N₂H₄, Co(Cp)₂, and Lut+HCl were scaled accordingly. A typical protocol for a 10:1 substrate:catalyst ratio follows. The appropriate amount (0.50 mL) of a stock solution (5 mM) of the catalyst was added to CH₃CN (<40 mL). To this solution was injected *via* syringe 10 equiv of N₂H₄ (0.25 mL of a 0.20 M stock solution), and the volume was made up to 40 mL. Finally, cobaltocene (0.02 g) and Lut+HCl (0.03 g) were added to the mixture under rigorous

stirring. Aliquots of the solution (3 mL) were withdrawn by syringe and used for ammonia determination. The protocols and references for ammonia and hydrazine determinations are found in Table 5.

Experimental Procedure for the Recovery and Identification of the Cluster Catalyst 3. A sample of **3** (0.17 g, 0.1 mmol) was dissolved in 20 mL of CH₃CN. To this solution was added dropwise a 0.20 M stock solution of N₂H₄ in CH₃CN (0.96 mL, 0.2 mmol), and the volume was adjusted to 40 mL. Solid Co(Cp)₂ (0.07 g, 0.4 mmol) and LutHCl (0.11 g, 0.8 mmol) were added, and the mixture was stirred vigorously for 1.5 h. At this time, the precipitation of a black solid material was apparent. An aliquot of this mixture was tested for NH₃ by the indophenol method. The NH₃ found (~0.4 mmol) amounted to ~100% conversion. A quantitative test for N₂H₄ by a literature method showed only a trace. This mixture was then filtered, and the black solid was isolated (0.08 g). The dark brown filtrate was collected and allowed to stand overnight at room temperature. At this stage, it was tested for NH₃ but none was detected. This implies that all the NH₃ had remained with the residue, very likely as NH₄⁺ cations.

(a) Analysis of the Filtrate. The filtrate was evaporated to dryness, and the brown oil was washed thoroughly with EtOH until all of the Co(Cp)₂Cl was removed. The yellow washings were combined and found to contain only Co(Cp)₂Cl, by its characteristic electronic spectrum showing broad absorptions at 400, 300, and 260 nm. This spectrum is identical to the spectrum of a solution of "authentic" Co- $(Cp)_2Cl$ in EtOH. The remaining brown solid (~0.07 g) was recrystallized from CH₃CN/Et₂O. The resulting material was characterized by electronic spectroscopy (the electronic spectrum of 3 is featureless, so only absorptions due to Co(Cp)2+ can be identified) mid-infrared spectroscopy (peaks assigned to $Co(Cp)_2^+$ 462 (m), 866 (m), 1414 (s), 3100 (m) cm⁻¹; peaks assigned to v_{asym} (C=O) 1635 cm⁻¹, v_{sym} (C-O) 1300 cm⁻¹; peaks assigned to Et_4N^+ 787 (w), 1008 (m), 1035 (w), 1184 (m), 1363 (m), 1393(m), 1458 (m), 1483 (m), 2948 (w), 2975 (m) cm⁻¹), and far-infrared spectroscopy (peaks at 290 (m), 315 (w), 342 (s), 353 (vs), 393 (m), 412 (m) cm⁻¹). The far-infrared spectrum agrees entirely with the spectrum of pure (Et₄N)₄ [MoFe₃S₄Cl₃(SCH- $(CH_3)COO)]_2$, 3, and convincingly shows that the cluster core has remained intact. Mid-infrared spectroscopy indicates that the carboxylate binding mode has not been altered. It also shows presence of two different cations, Et₄N⁺ and Co(Cp)₂⁺. Anal. Calcd for Mo₂Fe₆CoS₁₀-Cl₆O₄N₃C₄₀H₇₈ (MW 1783,14; [(Et₄N)₃(Co(Cp)₂)][MoFe₃S₄Cl₃(SCH-(CH₃)COO)]₂): C, 26.92; H, 4.37; N, 2.36. Found: C, 27.91; H, 3.89; N, 2.53. A sample of this "recycled" material was used to prepare a 0.05 M stock solution in CH₃CN. A 10:1 catalytic reaction was carried out (under conditions described above), and a 90% conversion to NH₃ was established after 0.5 h.

(b) Analysis of the Residue. The black residue isolated at the end of the reaction described above (~0.08 g) was suspended in 20 mL of CH₃CN, and in order to solubilize it, Et₄NOH (0.2 M in EtOH) was added dropwise until a dark brown homogeneous solution resulted (vacuum was employed periodically, to remove the volatile products $(NH_3 \text{ generated by deprotonation of } NH_4^+)$. The solution was filtered (negligible amount of black residue), and Et₂O was added to the filtrate. A brown-black solid precipitated and was recrystallized from CH₃CN/ Et₂O. The isolated brown-black solid was characterized by infrared spectroscopy and electronic spectroscopy and found to be essentially the same as the recovered catalyst from the "filtrate". The only difference between the two materials was the relative ratio of the Et_4N^4 and Co(Cp)₂⁺ cations. Anal. Calcd for Mo₂Fe₆Co₂S₁₀Cl₆O₄N₂C₄₂H₆₈ $(MW \ 1842.0; \ ((Et_4N)(Co(Cp)_2)_3[MoFe_3S_4Cl_3(SCH(CH_3)COO)]_2): \ C,$ 27.36; H, 3.69; N, 1.52. Found: C, 26.14; H, 2.93; N, 1.62. A sample of this material was used to prepare a 0.05 M stock solution in CH₃-CN. A 10:1 catalytic reaction was carried out (see protocol above), and an 87% conversion to NH₃ was established after 0.5 h.

X-ray Structural Determinations. Crystal data, intensity collection information, and structure refinement parameters for compounds **2** and **3** are provided in Table 1. Diffraction data were obtained at ambient temperature on a Nicolet P3F (Siemens) four-circle computer-driven diffractometer using graphite-monochromatized $(2\theta_{max} = 12.50^{\circ})$ Mo K α radiation ($\lambda = 0.710$ 73 Å). Intensity data were collected by using a θ -2 θ step scan technique. The computer programs were those of the SHELXTL structure determination package.

X-ray Measurements and Collection and Reduction of Data. (a)

 Table 1.
 Summary of Crystal Data and Intensity Collection and

 Structure Refinement Parameters for Compounds 2 and 3

formula	M02Fe6Cl6S10O4- N4C36H84	$Mo_2Fe_6Cl_6S_{10}O_4N_4$ - C38H88CH3CN
MW	1696.28	1765.28
a (Å)	18,959(9)	16.281(5)
b (Å)	12.657(7)	25.13(1)
$c(\mathbf{A})$	28.57(1)	19.019(7)
β (deg)	98.03(4)	112.61(2)
$V(Å^3)$	6790(5)	7182(4)
Z	4	4
crystal system	monoclinic	monoclinic
space group	C2/c	C2/c
crystal size (mm)	$0.35 \times 0.20 \times 0.05$	$0.32 \times 0.17 \times 0.10$
$d_{\text{calcd}} (g/\text{cm}^3)^a$	1.66	1.63
$d_{\rm obsd} ({\rm g/cm^3})^a$	1.66	1.65
radiation (λ, \mathbf{A})	Μο Κα (0.710 73)	Μο Κα (0.710 73)
abs coeff μ (cm ⁻¹)	21.6	20.5
scan speed (deg/min)	1.50-15.00	1.50-15.00
scan range	$1.2 + (2\theta_{K\alpha_1} - 2\theta_{K\alpha_2})$	$1.2 + (2\theta_{\mathbf{K}\alpha_1} - 2\theta_{\mathbf{K}\alpha_2})$
data collected (octants)	$3-45^{\circ}(+h,+k,\pm l)$	$3-45^{\circ}(+h,+k,\pm l)$
no. of total reflns	9714	6682
no. of unique reflns	5942	4728
no. of refined reflns	2958	2774
no. of variables	299	287
data:param ratio	10.0	9.8
GOF	1.79	3.06
$R (\%)^{b}$	6.09	7.00
R_{w} (%) ^c	6.26 ^d	6.52 ^e

^{*a*} By flotation in dibromoethane/CCl₄ mixture. ^{*b*} $R = \sum (|F_o - F_c|)/ \sum |F_o|$. ^{*c*} $R_w = [\sum (w|F_o - F_c|)^2 / \sum w(F_o)^2]^{1/2}$. ^{*d*} $w^{-1} = \sigma^2(F_o) + 0.001(F_o)^2$. ^{*e*} $w^{-1} = \sigma^2(F_o) + 0.0001(F_o)^2$.

 $(Et_4N)_4[(MAA)MoFe_3S_4Cl_3]_2$ (2). Suitable single crystals for a diffraction experiment were grown by vapor diffusion of Et_2O into a CH₃-CN solution of the compound. A black needle was cleaved to appropriate size, and a fragment $(0.35 \times 0.20 \times 0.05 \text{ mm})$ was mounted in a sealed quartz capillary under Ar atmosphere.

(b) (Et₄N)₄[(TLA)MoFe₃S₄Cl₃]₂ (3). Appropriately sized single crystals suitable for an X-ray experiment were grown by vapor diffusion of Et₂O into a CH₃CN solution of the compound over a period of several days. A black needle $(0.32 \times 0.17 \times 0.10 \text{ mm})$ was mounted in a quartz capillary as described previously. For both crystals, the determination of unit cell parameters and data collection and reduction routines were followed according to protocols described previously.^{9b}

Solution and Refinement of the Structures. The direct methods routine SOLV of the SHELXTL 88 package of the crystallographic program was used to solve both structures. Trial positions of the Mo, Fe, and core S atoms were taken from the E map derived from the unique phase set with the next-to-highest combined figure of merit. The remaining non-hydrogen atoms were located by subsequent difference Fourier maps. The structures were refined by the blockcascade least-squares method. All Mo, Fe, S, Cl, O, and C atoms of the anions were refined anisotropically. The remaining atoms were assigned isotropic temperature coefficients.

(a) $(Et_4N)_4[(MAA)MoFe_3S_4Cl_3]_2$ (2). The two Et_4N^+ cations in the asymmetric unit are disordered. This disorder was modeled successfully by refining the methyl C at full occupancy, while the methylene C atoms were placed in two alternate positions at 40% and 60% occupancies, respectively. Fixed contributions for the H atoms (C-H bond length of 0.96 Å) with thermal parameters set to 1.2 times those of the bonded C atoms were included in the final stages of the refinement for all non-disordered C atoms. One CH₃CN solvent molecule is found per double cubane in the asymmetric unit.

(b) $(Et_4N)_4[(TLA)MoFe_3S_4Cl_3]_2$ (3). There are two Et_4N^+ cations in the asymmetric unit, both of which are disordered. The first cation exhibits the common disorder having its methylene carbons disordered and was modeled as described previously. The second cation appeared to have all of its carbon atoms disordered. Therefore, all of its methyl and methylene C atoms were placed at alternate positions and were assigned 50% occupancy. H atoms were treated as previously for the non-disordered C atoms.

Crystallographic Results. The final atomic positional and thermal parameters for the tetraanion 2 with standard deviations derived from

Table 2. Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Thermal Parameters $(Å^2 \times 10^3)$ for the Non-Hydrogen Atoms in $[MoFe_3S_4Cl_3(SCH_2COO)]_2^{4-}$, 2

atom		v	7	Unalb
				- cq
Mo (1)	5580(1)	926(1)	3123(1)	41(1)
Fe (1)	5475(1)	2436(1)	3793(1)	52(1)
Fe(2)	6402(1)	748(1)	3979(1)	56(1)
Fe(3)	6656(1)	2347(1)	3361(1)	49(1)
S(5)	5712(1)	878(2)	2238(1)	46(1)
S(1)	5535(1)	2769(2)	3022(1)	48(1)
S(2)	6809(1)	583(2)	3275(1)	54(1)
S(3)	5191(2)	702(2)	3870(1)	57(1)
S(4)	6631(2)	2539(2)	4152(1)	60(1)
Cl (1)	4739(2)	3524(3)	4101(1)	85(1)
Cl(2)	6900(2)	-345(3)	4524(2)	98(2)
Cl(3)	7477(2)	3330(2)	3096(1)	73(1)
O(1)	5421(4)	-704(5)	3032(3)	59(3)
O(2)	5263(5)	-2107(7)	1887(4)	96(5)
C(1)	5203(6)	-1169(10)	1981(5)	71(5)
C(2)	5884(6)	-496(9)	2098(5)	69(5)

^{*a*} Equivalent isotropic *U* is defined as one-third of the trace of the orthogonalized \mathbf{U}_{ij} tensor $(U_{eq} = \frac{1}{3}\sum_i \sum_j U_{ij}a_i^*a_j^*\mathbf{a}_i^*\mathbf{a}_j)$. ^{*b*} Estimated standard deviations are given in parentheses.

Table 3. Selected Bond Distances (Å) and Angles (deg) for $[MoFe_3S_4Cl_3(MAA)]_2^{4-}$, 2, and $[MoFe_3S_4Cl_3(TLA)_2^{4-}$, 3

Bond Distances

	2	3
Mo···Mo	3.916(3)	3.899(3)
Mo•••Fe (mean)	2.727(2)	2.727(3)
Fe•••Fe (mean)	2.728(3)	2.724(3)
Fe•••S (mean)	2.278(4)	2.275(7)
Fe•••Cl (mean)	2.219(4)	2.218(7)
$S(5) \cdot \cdot \cdot S(5a)$	3.266(6)	3.300(7)
$S(1) \cdot \cdot \cdot S(1a)$	3.364(6)	3.370(9)
Mo(1) - S(1)	2.350(3)	2.330(4)
C(1) - O(1)	1.318(14)	1.298(23)
Mo(1) - S(2)	2.351(3)	2.366(4)
Mo(1) - S(3)	2.368(4)	2.352(5)
Mo(1)-S(5a)	2.577(3)	2.581(3)
Mo(1) - S(5)	2.523(3)	2.523(5)
Mo(1) = O(1)	2.096(7)	2.098(10)
S(5)-C(2)	1.824(12)	1.813(15)
C(1) - C(2)	1.545(17)	1.512(28)
C(1) = O(2)	1.226(15)	1.181(22)
	Angles	
	2	3
S(1) - Mo(1) - S(2)	102.9(1)	102.5(1)
S(5a) - Mo(1) - S(3)	165.0(1)	160.6(1)
S(2) = Mo(1) = S(3)	103.7(1)	103.1(2)
S(5a) - Mo(1) - O(1)	83.5(2)	77.2(3)
S(2)-Mo(1)-O(1)	87.8(2)	86.5(2)
S(5) - Mo(1) - S(5a)	79.6(1)	80.3(1)
S(2) - Mo(1) - S(5a)	162.1(1)	167.7(2)
O(1) - Mo(1) - S(5a)	79.1(2)	77.2(3)
S(5) - Mo(1) - S(1)	84.8(1)	87.5(2)
S(5)-Mo(1)-S(2)	86.9(1)	89.7(1)
S(1) - Mo(1) - S(3)	102.7(1)	103.5(2)
S(1) - Mo(1) - O(1)	162 6(2)	162 3(3)
	103.0(2)	102.0(0)
S(3) = Mo(1) = O(1)	86.4(2)	89.0(3)
S(3)-Mo(1)-O(1) S(1)-Mo(1)-S(5)	86.4(2) 87.6(1)	89.0(3) 87.5(2)

the inverse matrices of the least-squares refinements are compiled in Table 2. Similar parameters for the cations and the H atoms have been deposited as supporting information. Selected intramolecular distances and angles for the anions in 2 and 3 are included in Table 3 with labeling schemes as shown in Figures 1 and 2, respectively, for 2 and 3. Due to the similarity of the structures of 2 and 3, the crystallographic coordinates for 3 will not be reported herein but have been previously deposited.¹²

Figure 1. Structure of the $[MoFe_3S_4Cl_3(SCH_2COO)]_2^{4-}$ (2) double cubane showing the 40% probability ellipsoids (drawn by ORTEP) and the atom-labeling scheme.

Figure 2. ORTEP plot of the $[MoFe_3S_4Cl_3(SCH(CH_3)COO)]_2^{4-}$ (3) anion with atom-labeling scheme. Thermal ellipsoids represent 40% probability.

Results and Discussion

Synthesis. The CH₃CN solvent molecule in the [(Cl₄cat)MoFe₃S₄Cl₃(CH₃CN)]²⁻ cluster, 1, can be replaced with a variety of neutral or anionic ligands such as RS^{-,1b} RO^{-,1b} CN^{-,1b,d} N₃^{-,1d} PEt₃,^{1b} hydrazines,^{1d,2h} and pyrazine.^{2h} These facile substitution reactions are of paramount importance in the catalytic reductions by 1 of nitrogenase substrates. The latter (hydrazine, acetylene) are thought to replace CH₃CN in 1 and undergo activation and subsequent reduction.^{13,15} The Mobound bidentate tetrachlorocatecholate, Cl4-cat, ligand in 1 can be easily protonated with appropriate carboxylic acids to yield cubanes with Mo-bound polycarboxylate ligands including oxalate,^{9,14b} methylimino diacetate,^{9b} citrate,⁹ malate,⁹ citramalate,⁹ diglycolate,¹⁶ and nitrilotriacetate.¹⁶ The reaction of 1 with glycolic acid (HOCH₂COOH), GA, did not take place to any appreciable extent (even after prolonged reaction time, \sim 3 d, at 50 °C) presumably due to the low acidity of the -OHgroup,¹⁷ which renders the acid incapable of protonating the Cl₄-cat ligand. On the contrary, reaction of 1 with mercaptoacetic acid, MAA, the thio analog of glycolic acid, occurs readily (within 10 min) with a nearly quantitative protonation and substitution of the Cl₄-cat ligand. This reaction apparently takes place due to the higher acidity of the -SH group vs the -OH group. This phenomenon has been studied thoroughly and generalized to a variety of mercapto carboxylic acids.¹⁸ In the case of MAA, $pK_a(SH) = 10.40$ whereas, for GA, $pK_a(OH)$ > 15. The formation of the MAA derivative, 2, is manifested by dramatic changes in the infrared spectrum (see section on vibrational spectroscopy). The isolated product is a double cubane with MoFe₃S₄ subunits bridged by the deprotonated thiolate functionalities of the Mo-bound MAA ligands. A reasonable assumption would be that the first product that forms during the course of the reaction is the [MoFe₃S₄Cl₃(SCH₂-COO)(CH₃CN)]²⁻ cubane. This cluster subsequently loses the labile solvent ligand to allow coordination of the already Mobound thiolate moiety of a neighboring cubane, thus forming a dimer of cubanes. An alternative course of events in the early stages of the formation of 2 could be substitution of the CH₃-CN ligand in 1 to give a [MoFe₃S₄Cl₃(Cl₄-cat)(HSCH₂-COOH)]²⁻ intermediate with a monodentate MAA ligand. Formation of 2 eventually follows protonation of the Cl₄-cat ligand. Dimeric complexes with the bridging mode of MAA found in 2 (vide infra) are ubiquitous in the literature.¹⁹ The dimerization occasionally is prevented by bulky substituents on the $-CH_2$ - group of the acid.²⁰ A typical example is thiobenzilic acid, which has been used in the synthesis of monomeric Mo complexes as models for the enzyme xanthine oxidase.^{20c,d,f} The reaction of 1 with mercaptopropionic acid (HSCH₂CH₂COOH), an acid similar in acidity to MAA,¹⁸ did not occur at all, even after a prolonged period of reaction time (4 d) and elevated temperatures. This lack of reactivity may be explained in terms of the lower thermodynamic stability of an expected six-membered ring compared to that of a fivemembered ring. It appears that the thermodynamic driving force for the Cl₄-cat ligand substitution in 1 is determined by both the acidity of the -SH group and ring size effects.

The reaction of 1 with thiomalic acid, TMA, yields a product with the same core as the one in 2 above but with an additional, noncoordinated, $-CH_2COOH$ group. This is somewhat surprising, since thiomalate is known to be a good metal chelator^{20e} and was perhaps expected to bind to the Mo in a tridentate fashion.

Cluster 1 also reacts readily with thiodiglycolic acid, TDGA. This ligand coordinates to the Mo in a tridentate mode through its two $-COO^-$ groups and its thioether functionality. The gross structure of this cluster and atomic connectivity has been established on the basis of the best available, albeit low- quality, crystallographic diffraction data.²¹ To our knowledge, this is the first example of complexation of a thioether group to the

- (19) Jeannin, S.; Jeannin, Y.; Lavigne, G. J. Organomet. Chem. 1972, 40, 187. (b) Domazetis, G.; Magee, R. J.; James, B. D. J. Inorg. Nucl. Chem. 1981, 43, 1351. (c) Ma, L.; Liu, S.; Zhu, H.; Zubieta, J. Polyhedron 1989, 8, 669. (d) Tapscott, R. E. In Transition Metal Chemistry; Melson, G. A., Figgis, B. M., Eds.; Marcel Dekker: New York, 1982; Vol. 8, p 235.
- (20) Hansson, I. Acta Chem. Scand. 1968, 22, 509. (b) Elder, R. C.; Florian, L. R.; Lake, R. E.; Yacynych, A. M. Inorg. Chem. 1973, 12, 2690. (c) Palanca, P.; Picher, T.; Sanz, V.; Gómez-Romero, P.; Llopis, E.; Domenech, A.; Cervilla, A. J. Chem. Soc., Chem. Commun. 1990, 531. (d) Sanz, V.; Picher, T.; Palanca, P.; Gómez-Romero, P.; Llopis, E.; Ramirez, J. A.; Beltrán, D.; Cervilla, A. Inorg. Chem. 1991, 30, 3113. (e) Kiss, T.; Buglyó, P.; Micera, G.; Dessi, A.; Sanna, D. J. Chem. Soc., Dalton Trans. 1993, 1849. (f) Cervilla, A.; Ramiréz, J. A.; Llopis, E.; Palanca, P. Inorg. Chem. 1993, 32, 2085.
- (21) The gross structure of the (Et₄Ň)₂[(thiodiglycolate)MoFe₃S₄Cl₃] (5) cluster was determined. Unfortunately, poor crystal quality together with severe cation disorder did not allow for a successful refinement of the structure, so presentation of metric features is not warranted at this time. Nevertheless, the connectivity of the cluster was established and shows the dianion as a MoFe₃S₄Cl₃ single cubane core with the TDGA coordinated to the Mo atom through its two carboxyl and thioether functionalities. A schematic diagram of 5 is represented in Figure 3. Crystallographic data: monoclinic, space group P2₁/n, a = 11.325(5) Å, b = 20.690(6) Å, c = 15.716(8) Å, β = 98.00(4)°, V = 3637(3) Å³, Z = 4, d_{caled} = 1.63 g/cm³, T = ambient, μ = 20.3

⁽¹⁵⁾ Laughlin, L. J.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 3118.

⁽¹⁶⁾ Demadis, K. D.; Coucouvanis, D. Unpublished results.

⁽¹⁷⁾ Izutsu, K. Acid-Base Dissociation Constants in Dipolar Aprotic Solvents; IUPAC Chemical Data Series, No. 35; Blackwell Scientific Publications: Oxford, U.K., 1990; p 22.

⁽¹⁸⁾ Daney, J. P.; Parameswaran, K. N. J. Chem. Eng. Data 1968, 13, 386.

Figure 3. Core structure of the $[MoFe_3S_4Cl_3(OOCH_2SCH_2COO)]^{2-}$ (5) from crystallographically determined coordinates.²¹

Scheme 1

MoFe₃S₄ cubanes. Metal—thiodiglycolate coordination compounds have been synthesized and structurally characterized.^{19d,22} The syntheses of the mercapto carboxylate cubanes are shown in Scheme 1. Finally, It should be noted that the reaction of [MoFe₃S₄(SPh)₃(al₂-cat)(CH₃CN)]^{2-1d} (al = allyl) with an excess of PhSH affords the double cubane [Mo₂Fe₆S₈-(SPh)₉]^{3-,23,24} In this instance, protonation of the Mo-bound al₂-cat induces dimerization and yields exclusively the μ -SPh double cubane.

- Malmborg, T.; Oskarsson, Å. Acta Chem. Scand. 1973, 27, 2923. (b) Drew, M. G. B.; Rice, D. A.; Timewell, C. W. J. Chem. Soc., Dalton Trans. 1975, 144. (c) Whitlow, S. H. Acta Crystallogr. 1975, B31, 2531. (d) Sandhu, G. K.; Sharma, N. Appl. Organomet. Chem. 1993, 7. 33. (e) Neikovskii, S. I.; Priiykin, L. M.; Bol'shakov, V. I. Russ. J. Inorg. Chem. (Engl. Transl.) 1994, 39, 1944.
- (23) Holm, R. H.; Simhon, E. D. In *Molybdenum Emzymes*, Spiro, T. G., Ed.; Wiley-Interscience: New York, 1985; p I and references therein.
- (24) Christou, G.; Garner, C. D. J. Chem. Soc., Dalton Trans. 1980, 2354.

Vibrational Spectroscopy. (a) Far-Infrared Region. All the mercapto carboxylate cubanes show intense absorptions in the 300-360 cm⁻¹ region. More specifically, a set of two peaks at 345 and 355 cm⁻¹ can be assigned to Mo- μ_3 -S, Fe- μ_3 -S, and Fe-Cl skeletal vibrations or a combination of them.^{25,26} Such absorptions are characteristic of the [MoFe₃S₃Cl₃]⁰ structural core.^{9,26} For comparison, 1 exhibits the above set of vibrations at 346 and 361 cm⁻¹.^{9b} In addition to these vibrations, a vibration around 320 cm⁻¹ can be tentatively assigned to the Mo-S (thiolate) bond. Such vibrations have been previously detected in the MoV₂(MAA)₅(H₂O)₂ complex²⁷ and a variety of Mo complexes with cysteine or related ligands such as cysteine esters^{28a} or cysteamine chelates.^{28b}

(b) Mid-Infrared Region. The vibrational spectroscopic features of the starting compound 1 have been discussed to some extent elsewhere.9 Peaks assigned to Mo-bound Cl4-cat (1255, 1430, 542 cm⁻¹) and Mo-bound CH₃CN (2284, 3212 cm⁻¹) vanish upon reaction of 1 with mercapto carboxylic acids. At the same time intense C=O absorptions in the 1600-1750 cm⁻¹ region appear due to the metal-carboxylate moiety. More specifically. 2 and 3 give rise to $v_{asym}(C=0)$ at 1600, 1650, and 1629 cm⁻¹, respectively, while the corresponding $v_{sym}(C-$ O) values are found at 1305 and 1301 cm⁻¹. Consequently, the Δ values ($\Delta = v_{asym}(C=O) - v_{sym}(C=O)$) are 345 and 328 cm⁻¹, respectively, typical for terminally coordinated metalcarboxylate complexes.²⁹ Compound 4 shows a mediumintensity peak at 1732 cm⁻¹ due to a noncoordinated, protonated carboxylate moiety. Such a vibration is absent from spectra of 2, 3, and 5, which evidently lack such a group. Free -COOH vibrations have been detected for MoFe₃S₄ cores with Mo-bound citrate9 or nitrilotriacetate,16 which also possess a free -COOH group. Also, vibrations in the same region have been seen for diorganotin(IV) mercaptosuccinate complexes.^{22d,30}

Electronic and EPR Spectra. The electronic spectra of all the compounds reported herein are featureless and show a steadily increasing absorption from 750 nm to the UV region. Therefore, electronic spectroscopy is not a useful diagnostic tool for the characterization of these compounds. No EPR spectra are detected in CH₃CN solutions of 2-4 at temperatures as low as 4 K. The lack of the S = 3/2 EPR signal, typically observed with the [MoFe₃S₄]³⁺ cores,^{9,31} indicates strong electronic coupling between the [MoFe₃S₄]³⁺ subunits, resulting in the absence of a signal. A number of precedents of such coupling are available. The doubly-bridged double cubane clusters (DBDC's) of the general type {[(L-L)MoFe₃S₄Cl₂]₂(μ_2 -X)(μ_2 -S)]ⁿ⁻ (L-L = Cl₄-cat or oxalate; X = S²⁻, n = 6^{2f}; X = OH^{-,2f}

- (26) Challen, P. R. Ph.D. Thesis, The University of Michigan, 1990.
- (27) Sastry, M. S.; Kulshreshtha, S. K. J. Inorg. Biochem. 1991, 41, 79.
- (28) Ueyama, N.; Nakata, M.; Araki, T.; Nakamura, A.; Yamashita, S.;
 Yamashita, T. *Inorg. Chem.* 1981, 20, 1934. (b) Willis, L. J.; Loehr,
 T. M.; Miller, K. F.; Bruce, A. E.; Stiefel, E. I. *Inorg. Chem.* 1986, 25, 4289.
- (29) Mehrota, R. C.; Bohra, R. Metal Carboxylates; Academic Press: London, 1983; p 47. (b) Deacon, G. B.; Philips, R. J. Coord. Chem. Rev. 1980, 33, 227. (c) Nakamoto, K. In Spectroscopy and Structure of Metal Chelate Compounds; Nakamoto, K., McCarthy, P. J. Eds.; John Wiley and Sons: New York, 1968; p 216.
- (30) Hager, C. D.; Huber, F.; Silvestri, A.; Barbieri, A.; Barbieri, R. Guzz. Chim. Ital. 1993, 123, 583.
- (31) Armstrong, W. H.; Holm, R. H. J. Am. Chem. Soc. 1981, 103, 6246.
 (b) Mascharak, P. K.; Papaefthymiou, G. C.; Armstrong, W. H.; Foner, S.; Frankel, R. B.; Holm, R. H. Inorg. Chem. 1983, 22, 2851.

⁽²⁵⁾ Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley-Interscience: New York, 1986; p 411.
(b) Czernuszewicz, R. S.; Macor, K. A.; Johnson, M. K.; Gerwirth, A.; Spiro, T. G. J. Am. Chem. Soc. 1987, 109, 7178. (c) Yachandra, V. K.; Hare, J.; Gewirth, A.; Czernuszewicz, R. S.; Kimura, T.; Holm, R. H.; Spiro, T. G. J. Am. Chem. Soc. 1983, 105, 6462. (d) Kilpatrick, L. K.; Kennedy, M. C.; Beinert, H.; Czernuszewicz, R. S.; Qiu, D.; Spiro, T. G. J. Am. Chem. Soc. 1994, 116, 4053.

Table 4. Cyclic Voltammetric Data for the Clusters $1-6^{a,b}$

	-		
compd	solvent	redns (mv)	oxidns (mV)
1	CH ₃ CN	-920, qr	+300, irr
1	ClCH ₂ CH ₂ Cl	-940, qr	+350, irr
2	CH ₃ CN	-970, qr; -1170, irr	+350, irr; +500, irr
3	CH ₃ CN	-900, qr; -1110, irr	+150, irr; +500, irr
4	CH ₃ CN	-860, qr; -1050, irr	+200, irr; +500, irr
5	CH ₃ CN	-745, rev	+150, irr; +500, irr
6	CH ₃ CN	-956, qr	+195, irr; +600, irr

^{*a*} Electrochemical studies were performed with a BAS electroanalyzer. The electrochemical cell used had a platinum disc as the working electrode, a Pt wire auxiliary electrode, and an Ag/AgCl reference electrode. Tetrabutylammonium perchlorate (Bu₄NClO₄) was utilized as the supporting electrolyte. Typical concentrations used were ~10⁻³ M in electroanalyte and 10⁻² M in supporting electrolyte. ^{*b*} qr = quasireversible, irr = irreversible, rev = reversible.

 $CN^{-,2g,14b}$ or $N_3^{-,26}$ n = 5; $X = NH_2NH_2$, $n = 4^{2g}$) are "EPRsilent" due to coupling through the μ_2 -S bridge. In the case of the mercapto carboxylate clusters under consideration, electronic coupling occurs through the thiolate groups of the bridging ligands. In contrast, the single cubane 5 exhibits a clean EPR signal consistent with a S = 3/2 ground state ($g_{max} = 4.990$, g_x = 2.461, $g_{min} = 1.837$) as expected for an isolated [MoFe₃S₄]³⁺ core. Very similar spectra have been reported for other single MoFe₃S₄-hydroxy-polycarboxylate cubane clusters.⁹

Electron Transfer Properties. Cyclic voltammetric results for the clusters under discussion are presented in Table 4, and representative cyclic voltammograms are given in Figure 4. Clusters 2-4 show two quasi-reversible reduction processes, separated by 190-210 mV. Such separations are typical for similar electronically perturbed subunits, and this behavior has been analyzed in detail in a number of cases.^{9,23,24,32,33} The electrochemical behavior of the clusters under discussion shows that these compounds retain integrity in coordinating solvents (CH₃CN) and the entire cluster behaves as an entity with strongly interacting subunits. The above results are in full agreement with, and indirectly verify, the EPR observations. Cluster 5 has a single reduction at -745 mV. This value can be compared with that of the corresponding reduction of [MoFe₃S₄Cl₃(methylimimodiacetate)]^{2-9b} at -830 mV (in CH₃-CN). All the mercapto carboxylate cubanes show irreversible oxidation waves. This is not unexpected, considering the presence of the redox-active thiolate ligands. Similar irreversible redox behavior has been observed with the thiolato triply bridged $[Mo_2Fe_6S_8(SR)_9]^{3-}$ double cubanes.^{2b} A single reduction wave is found with cluster 6 at -955 mV, which is considered an indication that its dimeric structure collapses in CH₃CN solution to generate single [MoFe₃S₄Cl₃(DMT)- (CH_3CN) ²⁻ cubanes. EPR results show this compound to have an $S = \frac{3}{2}$ ground state and verify the above hypothesis.

Description of the Structures. The tetraanion in 2 is located on a crystallographically imposed C_2 axis passing through the center of the rhomb defined by the two Mo atoms and the two bridging S atoms. Mean values of intracubane Mo-S, Fe-S, and Fe-Cl distances are found at 2.356(3), 2.278(4), and 2.219-(4) Å, respectively. The Mo···Fe and Fe···Fe distances are 2.727(2) and 2.728(3) Å, respectively. The above metric features are commonly found in similar metal-sulfur cores and will not be considered in any further detail. For more information on this topic, we refer to a plethora of other publications.^{1,21,23} The Mo atom is found in a distorted

Figure 4. Representative cyclic voltammograms of clusters 2-5. Peak potentials are indicated. Experimental conditions are as described in Table 4.

octahedral environment. Apart from the three μ_3 -S ligands, one carboxylate and two thiolate functionalities complete the coordination sphere of each Mo atom. Two different Mo-S_{bridging} bond distances are observed: a short one at 2.523(5) Å and a longer one at 2.581(3) Å. Mo/Fe/S clusters having alkanethiolates as bridging ligands between two Mo atoms have been reported in the literature and structurally characterized.²³ More specifically, the Mo-S_{bridging} bond length in the [Mo₂Fe₆S₈(SEt)₉]³⁻ cluster^{2a,24} is 2.567(4) Å, similar to the one found for the double cubane **2**. The short-long pattern in the Mo-S_b bond distances is also found in the [Mo₂O₂-

⁽³²⁾ Rutstrom, D. J.; Robbat, A., Jr. J. Electroanal. Chem. Interfacial Electrochem. 1986, 200, 193.

⁽³³⁾ Christou, G.; Garner, C. D.; Miller, R. M.; Johnson, C. E.; Rush, J. D. J. Chem. Soc., Dalton Trans. 1980, 2363.

(SCH₂COO)₄]²⁻ compound,^{19c} which contains the same "Mo₂- $(MAA)_2$ " core. In the latter, the Mo-S_b bond lengths are seen at 2.490(1) and 2.471(1) Å, slightly shorter than those in cluster 2, due to the Mo(VI) oxidation state. The Mo. Mo separation in MAA is 3.916(3) Å, a value that compares well with the corresponding Mo...Mo distance in [MoFe₃S₄(S-p-C₆H₄Br)₃- $(\mu$ -S₂)]₂^{4-,34} at 3.97(7) Å. The latter is the only other MoFe₃S₄ double cubane cluster known which is *doubly*-bridged through the Mo atoms. The long Mo...Mo distance in 2 or 3 precludes direct metal-metal interaction and suggests that the lack of an EPR spectrum is a consequence of effective antiferromagnetic coupling through the bis(thiolate) bridge. The Mo-O(carboxyl) bond at 2.10(1) Å is within the expected range of similar bonds.^{29a,35} Both mercaptoacetate chelate ligands are cis with respect to each other. This is somewhat intriguing, considering that a hypothetical trans configuration would be sterically more favorable, while the cubane-to-cubane distance wouldn not be altered. At this time, we are unable to assign this phenomenon to stereochemical reasons. The closest core S · · · S intercubane contact in 3 is found at 3.370(9) Å and is too long to be considered even as a weak disulfide bond.³⁶ Similar, but longer S···S contacts have been observed for the $[(Fe_4S_4Cl_3)_2(\mu-S)]^{4-1}$ cluster³⁷ at 3.67 Å. The S···S contacts in the doubly-bridged, double cubanes [(cat-Cl₄)(CH₃CN)MoFe₃S₄Cl₃)₂(μ -S)(for different intercluster bridges X are of similar magnitude: $X = S^{2-}$, 3.61 Å; $X = OH^{-}$, 3.20 Å; $X = NH_2NH_2$, 3.55 Å; X = CN^{-} , 3.81 Å. The S···S distance in 2 between the bridging S(thiolate) atoms is 3.300(7) Å and also cannot be considered as a bonding interaction.³⁸

Catalytic Reactivity. Reductions of Hydrazine to Ammonia. The ability of 3 to act as a catalyst in the reduction of hydrazine to ammonia (eq 1) in the presence of $Co(Cp)_2$ and

$$NH_2NH_2 + 2e^- + 4H^+ \rightarrow 2NH_4^+ \qquad (1)$$

Lut-HCl as reducing agent and source of protons, respectively, was investigated for various N_2H_4 :cluster ratios. The results (Table 5) show that the catalytic conversion of N_2H_4 to NH_4^+ is nearly quantitative after ca. 1.0 h for the 1:1 and 10:1 ratios. For the higher N_2H_4 :cluster ratios (20:1 or 40:1) ammonia production levels drop gradually. This observation has been attributed to the precipitation ("salting out") of N_2H_4 as N_2H_4 ·HCl, which depletes the reaction medium from substrate, and/or the precipitation of the catalyst combined with the NH_4^+ , $N_2H_5^+$, or Co(Cp)₂⁺ cations. Analytical and spectroscopic results verify the above statement (see Experimental Section). Ammonia production yields increase when a more dilute reaction mixture is used to avoid or delay precipitation. For

- (34) Kovacs, J. A.; Bashkin, J. K.; Holm, R. H. J. Am. Chem. Soc. 1985, 107, 1784. (b) Kovacs, J. A.; Bashkin, J. K.; Holm, R. H. Polyhedron 1987, 6, 1445.
- (35) Oldham, C. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: New York, 1984; Vol. 2, p 435.
- (36) Stevenson, D. L.; Magnuson, V. R.; Dahl, L. F. J. Am. Chem. Soc. 1967, 89, 3727. (b) Markó, L.; Bor, G.; Klumpp, E.; Markó, B.; Almásy, G. Chem. Ber. 1963, 96, 955. (c) Müller, A.; Jaegermann, W.; Enemark, J. H. Coord. Chem. Rev. 1982, 46, 245.
- (37) Challen, P. R.; Koo, S. M.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 2455.
- (38) "Normal" S-S bonds in metal complexes with organic disulfide ligands are ~2.04 Å (see the following references): (a) Bränden, C. I. Acta Chem. Scand. 1967, 21, 1000. (b) Kaddoka, M. M.; Wagner, L. G.; Seff, K. Inorg. Chem. 1976, 15, 812. (c) Boorman, P. M.; Kerr, K. A.; Kydd, R. A.; Moynihan, K. J.; Valentine, K. A. J. Chem. Soc., Dalton Trans. 1982, 1401. (d) Roesky, H. W.; Gries, T.; Jones, P. G.; Weber, K. L.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1984, 1781. (e) Blower, P. J.; Dilworth, J. R. Coord. Chem. Rev. 1987, 76, 121.

Table 5. Catalytic Reduction of N_2H_4 to NH_4^+ by the [MoFe₃S₄Cl₃(SCH(CH₃)COO)]₂⁴⁻ Cluster, **2**, in the Presence of Co(Cp)₂ as Reducing Agent and LutHCl as Proton Source^{*a*}

N ₂ H ₄ ^b :	NH ₃ yield, ^c equiv ^d (% conversion) ^e				
catalyst	5 min	15 min	30 min	1 h	12 h
1	0.90 (45)	1.28 (64)	1.52 (76)	1.66 (83)	1.98 (99)
10	12.0 (60)	16.0 (80)	18.0 (90)	19.6 (98)	20.0 (100)
20	18.8 (47)	21.2 (53)	24.0 (60)	25.6 (64)	35.6 (89)
40	19.2 (24)	20.0 (25)	22.4 (28)	24.0 (30)	48.8 (61)

^a Reactions were carried out anaerobically in CH₃CN using the (Et₄N)₄[MoFe₃S₄Cl₃(SCH(CH₃)COO)]₂ double cubane (3) as the catalyst and various amounts of N₂H₄ as shown. The concentration of the catalyst was 2.0×10^{-4} M, and the concentrations of N₂H₄, Co(Cp)₂, and LutHC1 were scaled accordingly. ^b One molecule of N₂H₄ per single cubane unit was assumed. ^c Ammonia was quantified by the indophenol method (Chaney, A. L.; Marbach, E. P. Clin. Chem. (Winston-Salem, N.C.) 1962, 8, 130). Sporadically, N₂H₄ quantification with p-(dimethylamino)benzaldehyde (Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006) confirmed complete nitrogen balance. A modified literature protocol for sampling and treatment of various samples was employed: Schrock, R. R.; Glassman, T. E.; Vale, M. G.; Kol, M. J. Am. Chem. Soc. 1993, 115, 1760. d All numbers reported are mean values of triplicate determinations. e Reactions of catalyst with Co(Cp)2 and LutHCl (absence of N_2H_4) or of N_2H_4 with Co(Cp)₂ and LutHCl (absence of catalyst) gave ammonia within background limits (<3%).

example, for a 100:1 substrate: catalyst ratio ([catalyst, 3] = 1.26 $\times 10^{-5}$ M), the following results were obtained, time (percent conversion): 5 min (58), 30 min (58), 1 h (66), 12 h (71). These results suggest enhanced conversion rates by comparison to those obtained using cluster 1 as the catalyst under identical conditions, time (percent conversion): 5 min (30), 30 min (34), 1 h (38), 12 h (61). This may implicate the carboxylate ligand and/or the mercapto group in the catalytic process, possibly as a proton transfer device that assists in substrate reduction.³⁹ The core of the catalyst 3 is found intact at the end of the reaction, and the "recycled" material continues to be catalytically active in additional N_2H_4 reduction cycles. In an attempt to evaluate the possible involvement of the Fe sites in the catalytic reaction process, the [Fe₄S₄Cl₄]²⁻ cluster⁴¹ was tested as a potential catalyst. Under the same reaction conditions, no ammonia was detected above background limits (<3%). A catalytic disproportionation reaction (eq 2)

$$3N_2H_4 \rightarrow 4NH_3 + N_2 \tag{2}$$

where N₂H₄ serves as both a substrate and a reducing agent, in the presence of **2** or **3**, did not proceed to any significant extent (about 4% conversion to NH₃ after 12 h). The coordinatively saturated Mo atom and the retention of the double cubane structure in solution (CH₃CN) raise questions concerning the possible binding site and mode of the N₂H₄ substrate. To address this point, **3** was allowed to react with 2 equiv of N₂H₄ in CH₃CN (see Experimental Section). The isolated cluster,⁴² displayed ν (N-H) at 3292, 3232, and 3154 cm⁻¹ and ν_{twist} -(N-H) at 1149 cm⁻¹. These vibrational frequencies are different from those associated with free N₂H₄⁴³ and are

- (41) Wong, G. B.; Bobrik, M. A.; Holm, R. H. Inorg. Chem. 1978, 17, 578.
- (42) Cyclic voltammetric measurements on the product in CH₃CN show quasi-reversible reduction waves at -970 and -1200 mV cathodically shifted relative to 3.
- (43) Giguére, P. A.; Liu, I. D. J. Chem. Phys. 1952, 20, 136.

⁽³⁹⁾ Results from our laboratory show that alterations in the Mo-coordinated polycarboxylate ligands of the [MoFe₃S₄]³⁺ core dramatically influence ammonia production yields. A general trend we have observed is that as the number of "arms" of the carboxylate ligand increases, the efficiency of the catalyst improves.⁴⁰

⁽⁴⁰⁾ Demadis, K. D.; Coucouvanis, D. Manuscript in preparation.

characteristic of metal-bound N₂H₄.^{2gh,44} The far-infrared spectrum of the product (with vibrations at 320 (m), 340 (vs), 355 (vs), 390 (m), and 411 (m) cm⁻¹) is characteristic of a MoFe₃S₄Cl₃ structural core.⁴⁵ Moreover, its EPR spectrum (in CH₃CN glass) displayed the characteristic $S = \frac{3}{2}$ signal associated with a *single* cubane core. Lastly, metal-bound end-on bridging N₂H₄ is unlikely to be present in any steps of the catalytic process, since it has been proven that side-on μ_2 -N₂H₄ is not reduced to any appreciable extent to NH₄⁺.¹³ Cluster **5** catalyzes the reduction of N₂H₄ as well. The yields are lower (100:1 ratio), time (percent conversion): 5 min (38), 30 min (45), 1 h (47), 12 h (65). Substrate access to Mo and subsequent activation of substrate on **5** can be envisioned by a change of the hapticity of the tridentate TDGA either by displacing the thioether S-donor atom or by protonation of a carboxyl arm.

Conclusions

Cluster 1 reacts readily with a variety of mercapto carboxylic acids. The Cl₄-cat ligand in 1 is protonated, and the mercapto carboxylate dianion is found coordinated to the Mo site in the end product. The cubane cluster products have the [MoFe₃-S₄Cl₃(SCH(R)COO)]₂⁴⁻ formulation. Cluster 1 also reacts with thiodiglycolic acid, which is incorporated in the final single cubane product in a tridentate fashion.

Compounds 2 and 3 have been structurally characterized as their Et_4N^+ salts. Their core is composed of two MoFe₃S₄ cubane structural subunits linked with two mercapto carboxylates through the bridging deprotonated thiol group while the carboxyl groups are found to be monodentate. Mo···Mo separations are 3.916(3) Å for 2 and 3.899(3) Å for 3. The closest core S···S contact is 3.370(9), Å and the S···S distance between the thiolato bridges is 3.300(7) Å. Preliminary crystallographic results show cluster 5 as a single MoFe₃S₄ cubane core with the diacid coordinated to the Mo *via* two carboxyl and thioether functionalities.²¹

In CH₃CN glasses, 2-4 do not show EPR signals at temperatures as low as 4 K. These, combined with the electrochemical results in the same solvent (multiplicity of redox waves), indicate that there is strong electronic coupling between the two MoFe₃S₄ subunits.

Clusters 3 and 5 are efficient catalysts in the reduction of N_2H_4 (a product of nitrogenase function under N_2 obtained by quenching the functioning enzyme with acid or alkali⁴⁶) to NH_3 in the presence of $Co(Cp)_2$ and Lut-HCl as reductant and proton source, respectively, with good turnover values. Cluster 3 gives a 66% conversion (N_2H_4 :catalyst = 100:1) after 1 h and 71%

after 12 h. Cluster 5 gives 38% and 65% yields, respectively, under the same conditions. The lack of catalytic activity for the Fe₄S₄ cubanes in similar reactions and under identical conditions strongly suggests that the Mo heterometal is the site of substrate activation and reduction. The Osaka group has reported studies on reductions of a variety of nitrogenase substrates by electrochemically generated reduced forms of the $[Fe_4S_4(SR)_4]^{2-}$ and $[Mo_2Fe_6S_8(SR)_9]^{3-}$ clusters.⁴⁷ There was no discussion on the possible involvement of the Mo heterometal in the above processes; however, under the conditions used in those experiments, the Mo site is unlikely to be available (e.g.)by protonation of a μ -SPh ligand) for substrate coordination. It appears that, for certain substrates, the Mo atom in nitrogenase is involved in substrate reduction in a process that requires availability of (at least) one site on the Mo atom. Evidence that may implicate the Mo atom as the site of substrate activation/inhibition in the FeMo-co^{3b} includes (a) the profound effects in dinitrogen reduction brought about by skeletal alterations in the Mo-bound homocitrate ligand¹⁰ and (b) EXAFS analyses⁴⁸ showing that CN⁻, a nitrogenase inhibitor,⁴⁹ binds to the Mo site of the nitrogenase cofactor. Continuation of our studies will focus on the role of the Mo-coordinated carboxylate ligands in the catalytic process. The results may shed some light on the possible role and involvement of homocitrate in the function of the nitrogenase cofactor. It was suggested recently that, just as in the $[WH_2(\eta^2 - OOCCH_3)(dppe)_2]^+$ complex, where loss of the carboxylate ligand is followed by N₂ coordination, dissociation of the homocitrate ligand from the Mo atom in the nitrogenase cofactor may precede substrate binding.50

Acknowledgment. This research was supported by NIH Grant GM-33080. The authors thank Drs. W. R. Dunham and R. Sands for obtaining the EPR measurements.

Supporting Information Available: Table S1, containing listings of positional parameters, thermal parameters, and selected bond distances and angles for $[MoFe_3S_4Cl_3(SCH_2COO)]_2^{4-}$, 2, and infrared spectra of 3 before and after the catalytic cycle (20 pages). Ordering information is given on any current masthead page. Listings of positional and thermal parameters and selected bond distances and angles for $[MoFe_3S_4Cl_3(SCH(CH_3)COO)]_2^{4-}$, 3, have been deposited as supplementary material with a previous publication.¹²

IC950179S

- (49) Li, J.; Burgess, B. K.; Corbin, J. L. Biochemistry 1982, 21, 4393.
- (50) Hughes, D. L.; Ibrahim, S. K.; Pickett, C. J.; Querme, G.; Laueman, A.; Talarmin, J.; Queiros, A.; Fonseca, A. Polyhedron 1994, 13, 3341.

 ⁽⁴⁴⁾ Sacconi, L.; Sabatini, A. J. Inorg. Nucl. Chem. 1963, 25, 1389. (b)
 Tsagkalidis, W.; Woitha, C.; Rehder, D. Inorg. Chim. Acta 1993, 205, 239. (c)
 Thornton, D. A. Vib. Spectrosc. 1993, 4, 309.

⁽⁴⁵⁾ Representative spectra have been deposited with the supporting information.

⁽⁴⁶⁾ Thorneley, R. N. F.; Lowe, D. J. Biochem. J. 1984, 224, 887. (b) Evans,
D. J.; Henderson, R. A.; Smith, B. E. In Bioinorganic Catalysis;
Reedijk, J., Ed; Marcel Dekker Inc.: New York, 1993; p 89. (c)
Thorneley, R. N.; Eady, R. R.; Lowe, D. J. Nature (London) 1978, 272, 557.

⁽⁴⁷⁾ Tanaka, K.; Tanaka, M.; Tanaka, T. Chem. Lett. 1981, 895. (b) Tanaka, K.; Imasaka, Y.; Tanaka, M.; Honjo, M.; Tanaka, T. J. Am. Chem. Soc. 1982, 104, 4258. (c) Tanaka, K.; Hozumi, Y.; Tanaka, T. Chem. Lett. 1982, 1203. (d) Hozumi, Y.; Imasaka, Y.; Tanaka, K.; Tanaka, T. Chem. Lett. 1983, 897. (e) Imasaka, Y.; Tanaka, K.; Tanaka, T. Chem. Lett. 1983, 1477.

⁽⁴⁸⁾ Liu, H. I.; Filipponi, A.; Gavini, N.; Burgess, B. K.; Hedman, B.; Di Cicco, A.; Natoli, C. R.; Hodgson, K. O. J. Am. Chem. Soc. 1994, 116, 2418.